Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl's inferior colliculus.

نویسندگان

  • C H Keller
  • T T Takahashi
چکیده

The spiking pattern evoked in cells of the owl's inferior colliculus by repeated presentation of the same broadband noise was found to be highly reproducible and synchronized with the temporal features of the noise stimulus. The pattern remained largely unchanged when the stimulus was presented from spatial loci that evoke similar average firing rates. To better understand this patterning, we computed the pre-event stimulus ensemble (PESE)-the average of the stimuli that preceded each spike. Computing the PESE by averaging the pressure waveforms produced a noisy, featureless trace, suggesting that the patterning was not synchronized to a particular waveform in the fine structure. By contrast, computing the PESE by averaging the stimulus envelope revealed an average envelope waveform, the "PESE envelope," typically having a peak preceded by a trough. Increasing the overall stimulus level produced PESE envelopes with higher amplitudes, suggesting a decrease in the jitter of the cell's response. The effect of carrier frequency on the PESE envelope was investigated by obtaining a cell's response to broadband noise and either estimating the PESE envelope for each spectral band or by computing a spectrogram of the stimulus prior to each spike. Either method yielded the cell's PESE spectrogram, a plot of the average amplitude of each carrier-frequency component at various pre-spike times. PESE spectrograms revealed surfaces with peaks and troughs at certain frequencies and pre-spike times. These features are collectively called the spectrotemporal receptive field (STRF). The shape of the STRF showed that in many cases, the carrier frequency can affect the PESE envelope. The modulation transfer function (MTF), which describes a cell's ability to respond to time-varying amplitudes, was estimated with sinusoidally amplitude-modulated (SAM) noises. Comparison of the PESE envelope with the MTF in the time and frequency domains showed that the two were closely matched, suggesting that a cell's response to SAM stimuli is largely predictable from its response to a noise-modulated carrier. The STRF is considered to be a model of the linear component of a system's response to dynamic stimuli. Using the STRF, we estimated the degree to which we could predict a cell's response to an arbitrary broadband noise by comparing the convolution of the STRF and the envelope of the noise with the cell's post-stimulus time histogram to the same noise. The STRF explained 18-46% of the variance of a cell's response to broadband noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of inferior colliculus neurons to double harmonic tones.

The auditory system can segregate sounds that overlap in time and frequency, if the sounds differ in acoustic properties such as fundamental frequency (f0). However, the neural mechanisms that underlie this ability are poorly understood. Responses of neurons in the inferior colliculus (IC) of the anesthetized chinchilla were measured. The stimuli were harmonic tones, presented alone (single har...

متن کامل

Direction selectivity mediated by adaptation in the owl's inferior colliculus.

Motion direction is a crucial cue for predicting future states in natural scenes. In the auditory system, the mechanisms that confer direction selectivity to neurons are not well understood. Neither is it known whether sound motion is encoded independently of stationary sound location. Here we investigated these questions in neurons of the owl's external nucleus of the inferior colliculus, wher...

متن کامل

Temporal Properties of Masked and Unmasked Tone Responses in the Anteroventral Cochlear Nucleus and the Influence of Blocking Inhibition

The anteroventral cochlear nucleus (AVCN), located at the first level of the central auditory system, sends major ascending inputs to higher auditory levels, such as the superior olivary complex and the inferior colliculus. However, temporal properties of AVCN neurons that might be useful for complex-sound processing have not been fully explored. This study applied different temporal measures, ...

متن کامل

Prevalence of stereotypical responses to mistuned complex tones in the inferior colliculus.

The human auditory system has an exceptional ability to separate competing sounds, but the neural mechanisms that underlie this ability are not understood. Responses of inferior colliculus (IC) neurons to "mistuned" complex tones were measured to investigate possible neural mechanisms for spectral segregation. A mistuned tone is a harmonic complex tone in which the frequency of one component ha...

متن کامل

Binaural cross-correlation predicts the responses of neurons in the owl's auditory space map under conditions simulating summing localization.

Summing localization describes the perceptions of human listeners to two identical sounds from different locations presented with delays of 0-1 msec. Usually a single source is perceived to be located between the two actual source locations, biased toward the earlier source. We studied neuronal responses within the space map of the barn owl to sounds presented with this same paradigm. The owl's...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2000